Properties

Label 13310.bi.5.a1.a1
Order $ 2 \cdot 11^{3} $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:D_{11}$
Order: \(2662\)\(\medspace = 2 \cdot 11^{3} \)
Index: \(5\)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a^{5}, cd^{8}, d, b$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_{11}^2:F_{11}$
Order: \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}.C_{10}.\PSL(2,11).C_2$, of order \(17569200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{4} \)
$\operatorname{Aut}(H)$ $C_{11}^2.\GL(2,11)$, of order \(1597200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{3} \)
$W$$C_{11}:F_{11}$, of order \(1210\)\(\medspace = 2 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{11}$
Normalizer:$C_{11}^2:F_{11}$
Complements:$C_5$
Minimal over-subgroups:$C_{11}^2:F_{11}$
Maximal under-subgroups:$\He_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$$C_{11}\times D_{11}$

Other information

Möbius function$-1$
Projective image$C_{11}^2:F_{11}$