Subgroup ($H$) information
Description: | not computed |
Order: | \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | not computed |
Generators: |
$\langle(15,16)(17,18), (1,2)(5,6)(7,8)(11,12), (7,8)(11,12)(13,15,18)(14,16,17) \!\cdots\! \rangle$
|
Derived length: | not computed |
The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.
Ambient group ($G$) information
Description: | $A_4^2\wr C_2.C_2^2.C_2^3$ |
Order: | \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^8.C_3^4.C_2.C_2^6.C_2^4$ |
$\operatorname{Aut}(H)$ | not computed |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | $C_2^8.C_3^4.C_2^4$ |
Normal closure: | $C_2^8.C_3^4.C_2^4$ |
Core: | $C_2^8.C_3^4.C_2$ |
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | $A_4^2:\POPlus(4,3).C_2^3$ |