Properties

Label 1327104.di.8.L
Order $ 2^{11} \cdot 3^{4} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(165888\)\(\medspace = 2^{11} \cdot 3^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: not computed
Generators: $\langle(15,16)(17,18), (1,2)(5,6)(7,8)(11,12), (7,8)(11,12)(13,15,18)(14,16,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_4^2\wr C_2.C_2^2.C_2^3$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3^4.C_2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ not computed
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer:$C_2^8.C_3^4.C_2^4$
Normal closure:$C_2^8.C_3^4.C_2^4$
Core:$C_2^8.C_3^4.C_2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^2:\POPlus(4,3).C_2^3$