Properties

Label 1327104.di.32.A
Order $ 2^{9} \cdot 3^{4} $
Index $ 2^{5} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(41472\)\(\medspace = 2^{9} \cdot 3^{4} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: not computed
Generators: $\langle(15,16)(17,18), (1,2)(5,6)(7,8)(11,12), (7,8)(11,12)(13,15,18)(14,16,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, metabelian (hence solvable), and an A-group. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_4^2\wr C_2.C_2^2.C_2^3$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_4:C_2^2$
Order: \(32\)\(\medspace = 2^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $S_4\wr C_2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Outer Automorphisms: $\SOPlus(4,2)$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3^4.C_2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ not computed
$W$$A_4^2:\POPlus(4,3).C_2^3$, of order \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$A_4^2\wr C_2.C_2^2.C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^2:\POPlus(4,3).C_2^3$