Properties

Label 1327104.di
Order \( 2^{14} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{5} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{19} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \)
Perm deg. not computed
Trans deg. $24$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (9,12)(10,11)(13,14)(15,16)(19,23,20,24)(21,22), (3,5,4,6)(7,9,8,10)(15,16)(19,23,21,20,24,22), (1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21), (1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,23,12,24), (21,22)(23,24) >;
 
Copy content gap:G := Group( (9,12)(10,11)(13,14)(15,16)(19,23,20,24)(21,22), (3,5,4,6)(7,9,8,10)(15,16)(19,23,21,20,24,22), (1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21), (1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,23,12,24), (21,22)(23,24) );
 
Copy content sage:G = PermutationGroup(['(9,12)(10,11)(13,14)(15,16)(19,23,20,24)(21,22)', '(3,5,4,6)(7,9,8,10)(15,16)(19,23,21,20,24,22)', '(1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21)', '(1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,23,12,24)', '(21,22)(23,24)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(25508740706073097318851541286747693207501754312892287370442389826761985107833635669712634251977792164326188728626328483764785779174149443088287035596552984314765208253773406994046421695278162361974005639069896209154515444792186034924153186989775991296352922568203137235495561707173313415766307807167648466162128330012138164377461442108636499253783612134911631351195773340222144749036103810760396703038837169112563560271609239560646821859305094343398225559768382678383251066421036828091195186171636191037069989054613048453218411408810392693814562623253297431822874391253919472940024251149826283016134389386807126459902286537681053403849884162763867096411822803752686641432234770232505645512056279012409373637290637044264215168937980765489888136596573168927991633648714702870537123006694248129632215963279700864401751135823541723750730400,1327104)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18;
 

Group information

Description:$A_4^2\wr C_2.C_2^2.C_2^3$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^8.C_3^4.C_2.C_2^6.C_2^4$, of order \(42467328\)\(\medspace = 2^{19} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 14, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 11167 6560 238176 181856 373248 516096 1327104
Conjugacy classes   1 37 7 98 61 24 76 304
Divisions 1 37 7 82 61 16 64 268
Autjugacy classes 1 20 5 30 33 4 18 111

Minimal presentations

Permutation degree:not computed
Transitive degree:$24$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid e^{6}=f^{6}=g^{6}=h^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([18, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 36, 8273683, 9680474, 28273664, 10399142, 90736707, 9460533, 18386391, 201, 9707044, 16042342, 7940560, 3969076, 47863877, 41791703, 18720329, 15650123, 6625013, 311, 78478854, 43372248, 24000522, 18176316, 6864054, 40938, 56835079, 46600729, 32949547, 18320317, 8220175, 3749857, 1874563, 421, 4022792, 40373018, 14463404, 5085566, 4416848, 108962, 473480, 182557449, 47174427, 41230125, 1499103, 9869121, 7267419, 2464137, 390015, 39573, 531, 80011018, 57936412, 21593134, 4638016, 313714, 670132, 584614, 344656, 215182, 191628299, 48522269, 60258863, 20934785, 11384147, 7358789, 2402903, 1314281, 342299, 156989, 18335, 641, 56085132, 42052638, 9187824, 20608914, 1010964, 7705254, 202296, 1381674, 59124, 146190, 5225485, 44416561, 127075, 11104213, 5552167, 2612857, 25915, 12325, 11352974, 44789792, 27993650, 5598788, 6998486, 3499304, 583340, 233438, 77936, 48794, 16412, 6710, 191102991, 26873889, 13436979, 14929989, 373335, 1679721, 31245, 140127, 5361, 23523, 1233808, 12690466, 6345268, 7138438, 132334, 330640, 110338, 11212, 3886, 9412, 60466193, 114213923, 1703015, 420011, 3569309, 2159, 16757]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.4, G.6, G.8, G.10, G.12, G.14, G.15, G.16, G.17, G.18]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(25508740706073097318851541286747693207501754312892287370442389826761985107833635669712634251977792164326188728626328483764785779174149443088287035596552984314765208253773406994046421695278162361974005639069896209154515444792186034924153186989775991296352922568203137235495561707173313415766307807167648466162128330012138164377461442108636499253783612134911631351195773340222144749036103810760396703038837169112563560271609239560646821859305094343398225559768382678383251066421036828091195186171636191037069989054613048453218411408810392693814562623253297431822874391253919472940024251149826283016134389386807126459902286537681053403849884162763867096411822803752686641432234770232505645512056279012409373637290637044264215168937980765489888136596573168927991633648714702870537123006694248129632215963279700864401751135823541723750730400,1327104); a := G.1; b := G.3; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(25508740706073097318851541286747693207501754312892287370442389826761985107833635669712634251977792164326188728626328483764785779174149443088287035596552984314765208253773406994046421695278162361974005639069896209154515444792186034924153186989775991296352922568203137235495561707173313415766307807167648466162128330012138164377461442108636499253783612134911631351195773340222144749036103810760396703038837169112563560271609239560646821859305094343398225559768382678383251066421036828091195186171636191037069989054613048453218411408810392693814562623253297431822874391253919472940024251149826283016134389386807126459902286537681053403849884162763867096411822803752686641432234770232505645512056279012409373637290637044264215168937980765489888136596573168927991633648714702870537123006694248129632215963279700864401751135823541723750730400,1327104)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(25508740706073097318851541286747693207501754312892287370442389826761985107833635669712634251977792164326188728626328483764785779174149443088287035596552984314765208253773406994046421695278162361974005639069896209154515444792186034924153186989775991296352922568203137235495561707173313415766307807167648466162128330012138164377461442108636499253783612134911631351195773340222144749036103810760396703038837169112563560271609239560646821859305094343398225559768382678383251066421036828091195186171636191037069989054613048453218411408810392693814562623253297431822874391253919472940024251149826283016134389386807126459902286537681053403849884162763867096411822803752686641432234770232505645512056279012409373637290637044264215168937980765489888136596573168927991633648714702870537123006694248129632215963279700864401751135823541723750730400,1327104)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18;
 
Permutation group:Degree $24$ $\langle(9,12)(10,11)(13,14)(15,16)(19,23,20,24)(21,22), (3,5,4,6)(7,9,8,10)(15,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 24 | (9,12)(10,11)(13,14)(15,16)(19,23,20,24)(21,22), (3,5,4,6)(7,9,8,10)(15,16)(19,23,21,20,24,22), (1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21), (1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,23,12,24), (21,22)(23,24) >;
 
Copy content gap:G := Group( (9,12)(10,11)(13,14)(15,16)(19,23,20,24)(21,22), (3,5,4,6)(7,9,8,10)(15,16)(19,23,21,20,24,22), (1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21), (1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,23,12,24), (21,22)(23,24) );
 
Copy content sage:G = PermutationGroup(['(9,12)(10,11)(13,14)(15,16)(19,23,20,24)(21,22)', '(3,5,4,6)(7,9,8,10)(15,16)(19,23,21,20,24,22)', '(1,10,2,9)(3,8,6,11)(4,7,5,12)(13,20,15,23,14,19,16,24)(17,22)(18,21)', '(1,14,5,17,2,13,6,18)(3,16)(4,15)(7,19,9,22)(8,20,10,21)(11,23,12,24)', '(21,22)(23,24)'])
 
Transitive group: 24T21661 24T21667 36T39607 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(A_4^2.S_4^2:C_2^3)$ . $C_2$ $(A_4^2.S_4^2:C_2^2)$ . $C_4$ $(C_2^9.C_3:S_3^3)$ . $C_2^2$ $(C_2^9.C_3:S_3^3)$ . $C_2^2$ all 37

Elements of the group are displayed as permutations of degree 24.

Homology

Abelianization: $C_{2}^{3} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 125 normal subgroups (15 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $A_4^2:\POPlus(4,3).C_2^3$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.C_3^4.C_2$ $G/G' \simeq$ $C_2^3\times C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $A_4^2:\POPlus(4,3).C_2^3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $C_3^4.Q_8:C_2^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $A_4^2\wr C_2.C_2^2.C_2^3$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $C_3^4.Q_8:C_2^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7.C_2^5.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $A_4^2\wr C_2.C_2^2.C_2^3$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $A_4^2\wr C_2.C_2^2.C_2^3$ $\rhd$ $A_4^2.(C_2\times S_4^2:C_4)$ $\rhd$ $C_2^8.C_3^4.C_2^4$ $\rhd$ $C_2^8.C_3^4.C_2^3$ $\rhd$ $C_2^8.C_3^3.D_6$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $A_4^2\wr C_2.C_2^2.C_2^3$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $304 \times 304$ character table is not available for this group.

Rational character table

The $268 \times 268$ rational character table is not available for this group.