Subgroup ($H$) information
Description: | $A_4^2:(A_4^2:C_4)$ |
Order: | \(82944\)\(\medspace = 2^{10} \cdot 3^{4} \) |
Index: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$\langle(15,16)(17,18), (1,2)(5,6)(7,8)(11,12), (7,8)(11,12)(13,15,18)(14,16,17) \!\cdots\! \rangle$
|
Derived length: | $3$ |
The subgroup is normal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, or monomial has not been computed.
Ambient group ($G$) information
Description: | $A_4^2\wr C_2.C_2^2.C_2^3$ |
Order: | \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
Description: | $C_2^2\times C_4$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Outer Automorphisms: | $C_2^3:S_4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a $p$-group (hence elementary and hyperelementary).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^8.C_3^4.C_2.C_2^6.C_2^4$ |
$\operatorname{Aut}(H)$ | $A_4^2\wr C_2.C_2^2.D_4$, of order \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \) |
$W$ | $A_4^2:\POPlus(4,3).C_2^3$, of order \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \) |
Related subgroups
Centralizer: | not computed |
Normalizer: | $A_4^2\wr C_2.C_2^2.C_2^3$ |
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | not computed |
Projective image | $A_4^2\wr C_2.C_2^2.C_2^3$ |