Properties

Label 1327104.di.12.C
Order $ 2^{12} \cdot 3^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^9.S_3^3$
Order: \(110592\)\(\medspace = 2^{12} \cdot 3^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(15,16)(17,18), (1,2)(5,6)(7,8)(11,12), (5,6)(11,12)(17,18)(23,24), (3,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $A_4^2\wr C_2.C_2^2.C_2^3$
Order: \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3^4.C_2.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $A_4^2.C_2^4.C_6.C_2^6.C_2$
$W$$C_2^8.S_3^3$, of order \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^9.S_3^3$
Normal closure:$A_4^2\wr C_2.C_2^3$
Core:$C_2^9$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^2:\POPlus(4,3).C_2^3$