Properties

Label 1296.2076.3.c1.a1
Order $ 2^{4} \cdot 3^{3} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6:S_3^2$
Order: \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
Index: \(3\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{4}, b^{2}, b^{3}, e, c^{3}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6.S_3^3$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times S_3\times C_2^2\times C_3.S_3^2$
$\operatorname{Aut}(H)$ $D_6\times D_6\wr C_2$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$\operatorname{res}(S)$$D_6\times D_6^2$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_6:S_3^2$
Normal closure:$C_6.S_3^3$
Core:$C_3^3:D_4$
Minimal over-subgroups:$C_6.S_3^3$
Maximal under-subgroups:$C_3^3:D_4$$C_6\times S_3^2$$C_3^2:D_{12}$$C_3^2:D_{12}$$C_3^3:D_4$$C_6:S_3^2$$C_6.S_3^2$$D_6:D_6$$D_6:D_6$$C_{12}:D_6$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_3.S_3^3$