Properties

Label 1296.2076.6.k1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:D_{12}$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, e, b^{2}, c^{3}, c^{4}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6.S_3^3$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times S_3\times C_2^2\times C_3.S_3^2$
$\operatorname{Aut}(H)$ $C_2\times D_6^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2\times D_6^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$D_6:S_3^2$
Normal closure:$\He_3:D_{12}$
Core:$C_3^2\times D_6$
Minimal over-subgroups:$\He_3:D_{12}$$D_6:S_3^2$
Maximal under-subgroups:$C_3^2\times D_6$$C_3^2:D_6$$C_3^2:C_{12}$$C_6\wr C_2$$C_3\times D_{12}$$C_3:D_{12}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$1$
Projective image$C_3.S_3^3$