Properties

Label 1280.1116446.40.cm1
Order $ 2^{5} $
Index $ 2^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\wr C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,3)(8,10), (1,3)(4,7)(5,9)(8,10), (4,7)(8,10), (1,3)(2,6), (1,3)(2,7)(4,6)(5,10)(8,9)(11,12)(13,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_2^6:D_{10}$
Order: \(1280\)\(\medspace = 2^{8} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{16}.C_2^4.C_2^3$
$\operatorname{Aut}(H)$ $C_2\wr S_3$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$A_4:C_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^4$
Normalizer:$C_2^4:D_4$
Normal closure:$C_2\wr D_5$
Core:$C_2^4$
Minimal over-subgroups:$C_2^4:D_5$$C_2^3:D_4$$C_2^3:D_4$
Maximal under-subgroups:$C_2^4$$C_2\times D_4$$C_2^2:C_4$

Other information

Number of subgroups in this autjugacy class$20$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_2^6:D_{10}$