Subgroup ($H$) information
Description: | $C_2^4$ |
Order: | \(16\)\(\medspace = 2^{4} \) |
Index: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
Exponent: | \(2\) |
Generators: |
$\langle(1,3)(8,10), (1,3)(4,7)(5,9)(8,10), (4,7)(8,10), (1,3)(2,6)\rangle$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.
Ambient group ($G$) information
Description: | $C_2^6:D_{10}$ |
Order: | \(1280\)\(\medspace = 2^{8} \cdot 5 \) |
Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_{10}:D_4$ |
Order: | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Automorphism Group: | $C_2^2\wr C_2\times F_5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \) |
Outer Automorphisms: | $D_4:C_2^2$, of order \(32\)\(\medspace = 2^{5} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_{16}.C_2^4.C_2^3$ |
$\operatorname{Aut}(H)$ | $A_8$, of order \(20160\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{15}:C_4$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(512\)\(\medspace = 2^{9} \) |
$W$ | $D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
Related subgroups
Centralizer: | $C_2^7$ | ||||
Normalizer: | $C_2^6:D_{10}$ | ||||
Complements: | $C_{10}:D_4$ | ||||
Minimal over-subgroups: | $C_2^4:C_5$ | $C_2^5$ | $C_2^5$ | $C_2^5$ | $C_2^2\wr C_2$ |
Maximal under-subgroups: | $C_2^3$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_2^6:D_{10}$ |