Subgroup ($H$) information
Description: | $C_2^3:D_4$ |
Order: | \(64\)\(\medspace = 2^{6} \) |
Index: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$\langle(1,3)(8,10), (2,4)(5,8)(6,7)(9,10)(11,12)(13,14), (1,3)(2,6)(4,7)(5,9)(8,10), (4,7)(8,10), (1,3)(4,7)(5,9)(8,10), (1,3)(2,6)\rangle$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
Description: | $C_2^6:D_{10}$ |
Order: | \(1280\)\(\medspace = 2^{8} \cdot 5 \) |
Exponent: | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $F_{16}.C_2^4.C_2^3$ |
$\operatorname{Aut}(H)$ | $C_2^9.S_4$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2^2.S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $20$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $0$ |
Projective image | $C_2^6:D_5$ |