Properties

Label 126000.a.18000.a1.a1
Order $ 7 $
Index $ 2^{4} \cdot 3^{2} \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(7\)
Generators: $\left[ \left(\begin{array}{rrr} 21 & 20 & 23 \\ 0 & 4 & 3 \\ 7 & 17 & 12 \end{array}\right) \right]$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $\PSU(3,5)$
Order: \(126000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(3,5)$, of order \(756000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_7$
Normalizer:$C_7:C_3$
Normal closure:$\PSU(3,5)$
Core:$C_1$
Minimal over-subgroups:$C_7:C_3$
Maximal under-subgroups:$C_1$

Other information

Number of subgroups in this conjugacy class$6000$
Möbius function$0$
Projective image$\PSU(3,5)$