Subgroup ($H$) information
Description: | $C_{26}:C_6$ |
Order: | \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
Index: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \) |
Generators: |
$a^{2}b^{6}, b^{4}, c^{2}, c^{13}$
|
Derived length: | $2$ |
The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $C_2\times C_4\times F_{13}$ |
Order: | \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \) |
Exponent: | \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_2\times C_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Automorphism Group: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Outer Automorphisms: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\wr C_2^2\times F_{13}$, of order \(9984\)\(\medspace = 2^{8} \cdot 3 \cdot 13 \) |
$\operatorname{Aut}(H)$ | $C_2\times F_{13}$, of order \(312\)\(\medspace = 2^{3} \cdot 3 \cdot 13 \) |
$\operatorname{res}(S)$ | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | $0$ |
Projective image | $C_4\times F_{13}$ |