Subgroup ($H$) information
Description: | $C_2\times C_4\times F_{13}$ |
Order: | \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \) |
Index: | $1$ |
Exponent: | \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
Generators: |
$a, b^{6}, c^{13}, b^{4}, b^{3}, c^{2}, a^{2}$
|
Derived length: | $2$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_2\times C_4\times F_{13}$ |
Order: | \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \) |
Exponent: | \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $C_1$ |
Order: | $1$ |
Exponent: | $1$ |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\wr C_2^2\times F_{13}$, of order \(9984\)\(\medspace = 2^{8} \cdot 3 \cdot 13 \) |
$\operatorname{Aut}(H)$ | $C_2\wr C_2^2\times F_{13}$, of order \(9984\)\(\medspace = 2^{8} \cdot 3 \cdot 13 \) |
$W$ | $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $1$ |
Projective image | $F_{13}$ |