Properties

Label 1248.1158.156.a1
Order $ 2^{3} $
Index $ 2^{2} \cdot 3 \cdot 13 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, c^{13}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2\times C_4\times F_{13}$
Order: \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $F_{13}$
Order: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Automorphism Group: $F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\wr C_2^2\times F_{13}$, of order \(9984\)\(\medspace = 2^{8} \cdot 3 \cdot 13 \)
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_4\times F_{13}$
Normalizer:$C_2\times C_4\times F_{13}$
Complements:$F_{13}$
Minimal over-subgroups:$C_2\times C_{52}$$C_2\times C_{12}$$C_2^2\times C_4$
Maximal under-subgroups:$C_2^2$$C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$F_{13}$