Properties

Label 1248.1158.12.d1
Order $ 2^{3} \cdot 13 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{26}:C_4$
Order: \(104\)\(\medspace = 2^{3} \cdot 13 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(52\)\(\medspace = 2^{2} \cdot 13 \)
Generators: $ab^{6}, a^{2}, c^{2}, c^{13}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_2\times C_4\times F_{13}$
Order: \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
Exponent: \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\wr C_2^2\times F_{13}$, of order \(9984\)\(\medspace = 2^{8} \cdot 3 \cdot 13 \)
$\operatorname{Aut}(H)$ $D_4\times F_{13}$, of order \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4\times F_{13}$, of order \(1248\)\(\medspace = 2^{5} \cdot 3 \cdot 13 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$F_{13}$, of order \(156\)\(\medspace = 2^{2} \cdot 3 \cdot 13 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$C_2\times C_4\times F_{13}$
Complements:$C_{12}$
Minimal over-subgroups:$C_{26}:C_{12}$$C_4\times D_{26}$
Maximal under-subgroups:$C_2\times C_{26}$$C_{13}:C_4$$C_2\times C_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2\times F_{13}$