Subgroup ($H$) information
Description: | $C_2^2\times D_{14}$ |
Order: | \(112\)\(\medspace = 2^{4} \cdot 7 \) |
Index: | \(11\) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$a, c, d^{77}, b, d^{44}$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
Description: | $D_{14}\times D_{22}$ |
Order: | \(1232\)\(\medspace = 2^{4} \cdot 7 \cdot 11 \) |
Exponent: | \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^4.C_{231}.C_{30}.C_2^2$ |
$\operatorname{Aut}(H)$ | $F_7\times C_2^3:\GL(3,2)$, of order \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \) |
$\operatorname{res}(S)$ | $C_2^2:S_4\times F_7$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(10\)\(\medspace = 2 \cdot 5 \) |
$W$ | $D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $11$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $D_7\times D_{11}$ |