Properties

Label 1232.149.11.a1
Order $ 2^{4} \cdot 7 $
Index $ 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times D_{14}$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(11\)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a, c, d^{77}, b, d^{44}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{14}\times D_{22}$
Order: \(1232\)\(\medspace = 2^{4} \cdot 7 \cdot 11 \)
Exponent: \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_{231}.C_{30}.C_2^2$
$\operatorname{Aut}(H)$ $F_7\times C_2^3:\GL(3,2)$, of order \(56448\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{2} \)
$\operatorname{res}(S)$$C_2^2:S_4\times F_7$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10\)\(\medspace = 2 \cdot 5 \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2\times D_{14}$
Normal closure:$D_{14}\times D_{22}$
Core:$C_2\times D_{14}$
Minimal over-subgroups:$D_{14}\times D_{22}$
Maximal under-subgroups:$C_2\times D_{14}$$C_2\times D_{14}$$C_2^2\times C_{14}$$C_2\times D_{14}$$C_2^4$

Other information

Number of subgroups in this autjugacy class$11$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$D_7\times D_{11}$