Subgroup ($H$) information
Description: | $C_2\times D_{14}$ |
Order: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Index: | \(22\)\(\medspace = 2 \cdot 11 \) |
Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
Generators: |
$a, d^{77}, d^{44}, b$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), a direct factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Ambient group ($G$) information
Description: | $D_{14}\times D_{22}$ |
Order: | \(1232\)\(\medspace = 2^{4} \cdot 7 \cdot 11 \) |
Exponent: | \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.
Quotient group ($Q$) structure
Description: | $D_{11}$ |
Order: | \(22\)\(\medspace = 2 \cdot 11 \) |
Exponent: | \(22\)\(\medspace = 2 \cdot 11 \) |
Automorphism Group: | $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
Outer Automorphisms: | $C_5$, of order \(5\) |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^4.C_{231}.C_{30}.C_2^2$ |
$\operatorname{Aut}(H)$ | $S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \) |
$W$ | $D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $11$ |
Projective image | $D_7\times D_{11}$ |