Properties

Label 1232.149.22.a1
Order $ 2^{3} \cdot 7 $
Index $ 2 \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{14}$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $a, d^{77}, d^{44}, b$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{14}\times D_{22}$
Order: \(1232\)\(\medspace = 2^{4} \cdot 7 \cdot 11 \)
Exponent: \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $D_{11}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_5$, of order \(5\)
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.C_{231}.C_{30}.C_2^2$
$\operatorname{Aut}(H)$ $S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\operatorname{res}(\operatorname{Aut}(G))$$S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_2\times D_{22}$
Normalizer:$D_{14}\times D_{22}$
Complements:$D_{11}$ $D_{11}$
Minimal over-subgroups:$C_{22}\times D_{14}$$C_2^2\times D_{14}$
Maximal under-subgroups:$D_{14}$$C_2\times C_{14}$$C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$11$
Projective image$D_7\times D_{11}$