Subgroup ($H$) information
Description: | $C_{238}$ |
Order: | \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \) |
Index: | \(5\) |
Exponent: | \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \) |
Generators: |
$a, b^{425}, b^{35}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is maximal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.
Ambient group ($G$) information
Description: | $D_5\times C_{119}$ |
Order: | \(1190\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 17 \) |
Exponent: | \(1190\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 17 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_{48}\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{238}$ | ||
Normalizer: | $C_{238}$ | ||
Normal closure: | $D_5\times C_{119}$ | ||
Core: | $C_{119}$ | ||
Minimal over-subgroups: | $D_5\times C_{119}$ | ||
Maximal under-subgroups: | $C_{119}$ | $C_{34}$ | $C_{14}$ |
Other information
Number of subgroups in this conjugacy class | $5$ |
Möbius function | $-1$ |
Projective image | $D_5$ |