Properties

Label 1185792.d.1536.D
Order $ 2^{2} \cdot 193 $
Index $ 2^{9} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}:C_4$
Order: \(772\)\(\medspace = 2^{2} \cdot 193 \)
Index: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(772\)\(\medspace = 2^{2} \cdot 193 \)
Generators: $a^{48}b^{664}, a^{96}b^{5040}, b^{32}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{18528}:C_{64}$
Order: \(1185792\)\(\medspace = 2^{11} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_8\times C_{192}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Automorphism Group: $C_2.C_4^3.C_2^6.C_2$
Outer Automorphisms: $C_2.C_4^3.C_2^6.C_2$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{3088}.C_{24}.C_4^2.C_2^5$
$\operatorname{Aut}(H)$ $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
$W$$C_{193}:C_{64}$, of order \(12352\)\(\medspace = 2^{6} \cdot 193 \)

Related subgroups

Centralizer:$C_{96}$
Normalizer:$C_{18528}:C_{64}$
Minimal over-subgroups:$C_{193}:C_{12}$$C_{386}:C_4$$C_{193}:C_8$
Maximal under-subgroups:$D_{193}$$C_4$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_{18528}:C_{64}$