Properties

Label 1185792.d.12352.A
Order $ 2^{5} \cdot 3 $
Index $ 2^{6} \cdot 193 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{96}$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Exponent: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Generators: $b^{193}, b^{3088}, b^{1544}, a^{64}, b^{386}, b^{772}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, and cyclic (hence elementary ($p = 2,3$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_{18528}:C_{64}$
Order: \(1185792\)\(\medspace = 2^{11} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{193}:C_{64}$
Order: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Exponent: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Automorphism Group: $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Outer Automorphisms: $C_3$, of order \(3\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{3088}.C_{24}.C_4^2.C_2^5$
$\operatorname{Aut}(H)$ $C_2^2\times C_8$, of order \(32\)\(\medspace = 2^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{18528}:C_{64}$
Normalizer:$C_{18528}:C_{64}$
Complements:$C_{193}:C_{64}$
Minimal over-subgroups:$C_{18528}$$C_2\times C_{96}$
Maximal under-subgroups:$C_{48}$$C_{32}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{193}:C_{64}$