Properties

Label 1184.228.4.c1.a1
Order $ 2^{3} \cdot 37 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{74}$
Order: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(74\)\(\medspace = 2 \cdot 37 \)
Generators: $a, b^{4}, c^{2}, c^{37}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, abelian (hence metabelian and an A-group), and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $C_2\times C_{74}:C_8$
Order: \(1184\)\(\medspace = 2^{5} \cdot 37 \)
Exponent: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$Q_8:C_2^2.C_{37}.(C_{36}\times S_3)$
$\operatorname{Aut}(H)$ $C_{36}\times \PSL(2,7)$
$\operatorname{res}(\operatorname{Aut}(G))$$S_4\times C_{36}$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(296\)\(\medspace = 2^{3} \cdot 37 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_{74}$
Normalizer:$C_2\times C_{74}:C_8$
Minimal over-subgroups:$C_2^2.D_{74}$
Maximal under-subgroups:$C_2\times C_{74}$$C_2\times C_{74}$$C_2\times C_{74}$$C_2\times C_{74}$$C_2\times C_{74}$$C_2\times C_{74}$$C_2\times C_{74}$$C_2^3$

Other information

Möbius function$0$
Projective image$C_{37}:C_4$