Properties

Label 1184.228.8.b1.b1
Order $ 2^{2} \cdot 37 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{74}$
Order: \(148\)\(\medspace = 2^{2} \cdot 37 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(74\)\(\medspace = 2 \cdot 37 \)
Generators: $ab^{4}, c^{37}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_2\times C_{74}:C_8$
Order: \(1184\)\(\medspace = 2^{5} \cdot 37 \)
Exponent: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$Q_8:C_2^2.C_{37}.(C_{36}\times S_3)$
$\operatorname{Aut}(H)$ $S_3\times C_{36}$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\operatorname{res}(S)$$S_3\times C_{36}$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(296\)\(\medspace = 2^{3} \cdot 37 \)
$W$$C_4$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^2\times C_{74}$
Normalizer:$C_2\times C_{74}:C_8$
Complements:$C_8$ $C_8$ $C_8$ $C_8$
Minimal over-subgroups:$C_2^2\times C_{74}$
Maximal under-subgroups:$C_{74}$$C_{74}$$C_{74}$$C_2^2$
Autjugate subgroups:1184.228.8.b1.a11184.228.8.b1.c11184.228.8.b1.d1

Other information

Möbius function$0$
Projective image$C_{37}:C_8$