Properties

Label 11664.bi.9.c1
Order $ 2^{4} \cdot 3^{4} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3^3:S_3$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,10)(2,11)(3,12)(4,15)(5,14)(6,13), (7,9,8)(16,17,18), (1,7,11,18,3,8,10,16,2,9,12,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $S_3^4:C_2$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$W$$S_3^3:S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3^3:S_3$
Normal closure:$C_3^5:(C_2\times S_4)$
Core:$C_3:S_3^2$
Minimal over-subgroups:$C_3^4:(S_3\times D_4)$
Maximal under-subgroups:$C_3\times S_3^3$$C_3^3:C_4\times S_3$$C_3:S_3^3$$C_3^3:D_{12}$$C_3^4:D_4$$C_3^4:D_4$$C_3\wr D_4$$S_3^2:D_6$$S_3^3:C_2$$D_6:D_6$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^5:(C_2\times S_4)$