Subgroup ($H$) information
Description: | $D_6:D_6$ |
Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Index: | \(81\)\(\medspace = 3^{4} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(1,2,3)(7,9,8)(10,11,12)(16,18,17), (1,2)(5,6)(7,18)(8,17)(9,16)(11,12) \!\cdots\! \rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
Description: | $C_3^5:(C_2\times S_4)$ |
Order: | \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $4$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
$\operatorname{Aut}(H)$ | $C_2\times D_6^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
$W$ | $S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $81$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_3^5:(C_2\times S_4)$ |