Properties

Label 11664.bi.81.d1
Order $ 2^{4} \cdot 3^{2} $
Index $ 3^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6:D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(81\)\(\medspace = 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2,3)(7,9,8)(10,11,12)(16,18,17), (1,2)(5,6)(7,18)(8,17)(9,16)(11,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_3^5:(C_2\times S_4)$
Order: \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^2\times S_3^3):D_6$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_2\times D_6^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_6:D_6$
Normal closure:$C_3^5:(C_2\times S_4)$
Core:$C_1$
Minimal over-subgroups:$S_3^3:S_3$$D_6:S_3^2$
Maximal under-subgroups:$C_6\times D_6$$C_6.D_6$$S_3\times D_6$$C_3:D_{12}$$C_6^2:C_2$$D_6:S_3$$C_6\wr C_2$$C_6:D_4$$S_3\times D_4$

Other information

Number of subgroups in this autjugacy class$81$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_3^5:(C_2\times S_4)$