Properties

Label 115248.bg.7.a1.a1
Order $ 2^{4} \cdot 3 \cdot 7^{3} $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_7^3:S_4$
Order: \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)
Index: \(7\)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $ac^{12}d^{12}e, d^{7}ef, e, b^{2}c^{7}d^{7}e^{5}f^{3}, d^{2}e^{4}, f, b^{3}d^{12}e^{6}f^{5}, c^{7}d^{4}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_7\times C_7^3:S_4$
Order: \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.(C_7\times A_4).C_6^2.C_2$
$\operatorname{Aut}(H)$ $D_7^3:(C_6\times S_3)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \)
$W$$C_7^3:S_4$, of order \(8232\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_7^3:S_4$
Normal closure:$D_7\times C_7^3:S_4$
Core:$C_7^3:S_4$
Minimal over-subgroups:$D_7\times C_7^3:S_4$
Maximal under-subgroups:$C_7^3:S_4$$C_2\times C_7^3:A_4$$C_7^3:S_4$$C_2\times C_7^3:D_4$$C_7^3:D_6$$C_2\times S_4$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$D_7\times C_7^3:S_4$