Properties

Label 115248.bg.28.b1.a1
Order $ 2^{2} \cdot 3 \cdot 7^{3} $
Index $ 2^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3:D_6$
Order: \(4116\)\(\medspace = 2^{2} \cdot 3 \cdot 7^{3} \)
Index: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $ac^{12}d^{12}e, ef^{5}, f, b^{2}c^{7}d^{7}e^{5}f^{3}, b^{3}d^{12}e^{6}f^{5}, d^{2}e^{4}f$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $D_7\times C_7^3:S_4$
Order: \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.(C_7\times A_4).C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_7^2.C_3^3.C_2^4$
$W$$C_7^2:S_3$, of order \(294\)\(\medspace = 2 \cdot 3 \cdot 7^{2} \)

Related subgroups

Centralizer:$C_{14}$
Normalizer:$C_7^3:D_6$
Normal closure:$D_7\times C_7^3:S_4$
Core:$C_7^3$
Minimal over-subgroups:$C_7^4:D_6$$C_2\times C_7^3:S_4$
Maximal under-subgroups:$C_7^2:C_{42}$$C_7\wr S_3$$C_7\wr S_3$$D_{14}\times C_7^2$$C_7^2:D_6$$S_3\times C_{14}$

Other information

Number of subgroups in this conjugacy class$28$
Möbius function$1$
Projective image$D_7\times C_7^3:S_4$