Properties

Label 115248.bg.3.a1.a1
Order $ 2^{4} \cdot 7^{4} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(38416\)\(\medspace = 2^{4} \cdot 7^{4} \)
Index: \(3\)
Exponent: not computed
Generators: $ad^{12}ef^{6}, c^{2}f^{6}, e, d^{7}ef, d^{2}e, f, b^{3}d^{12}e^{6}f^{5}, c^{7}d^{4}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is maximal, nonabelian, a Hall subgroup, and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $D_7\times C_7^3:S_4$
Order: \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.(C_7\times A_4).C_6^2.C_2$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(38416\)\(\medspace = 2^{4} \cdot 7^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_7^4.C_2^3.C_2$
Normal closure:$D_7\times C_7^3:S_4$
Core:$D_7\times C_7^3:C_2^2$
Minimal over-subgroups:$D_7\times C_7^3:S_4$
Maximal under-subgroups:$D_7\times C_7^3:C_2^2$$C_7\times C_7^3:C_2^3$$C_7^4:(C_2\times C_4)$$C_7^4:D_4$$C_7\wr D_4$$C_7^3:D_{28}$$C_7^4:D_4$$C_2\times C_7^3:D_4$$D_7^3:C_2$$D_{14}:D_{14}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$D_7\times C_7^3:S_4$