Properties

Label 115248.bg.115248.a1.a1
Order $ 1 $
Index $ 2^{4} \cdot 3 \cdot 7^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, a direct factor, cyclic (hence elementary (for every $p$), hyperelementary, metacyclic, and a Z-group), stem, a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $D_7\times C_7^3:S_4$
Order: \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_7\times C_7^3:S_4$
Order: \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Automorphism Group: $C_7^3.(C_7\times A_4).C_6^2.C_2$
Outer Automorphisms: $C_3\times C_6$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.(C_7\times A_4).C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$D_7\times C_7^3:S_4$
Normalizer:$D_7\times C_7^3:S_4$
Complements:$D_7\times C_7^3:S_4$
Minimal over-subgroups:$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_7$$C_3$$C_2$$C_2$$C_2$$C_2$$C_2$

Other information

Möbius function$57624$
Projective image$D_7\times C_7^3:S_4$