Properties

Label 115248.bg.16464.a1.a1
Order $ 7 $
Index $ 2^{4} \cdot 3 \cdot 7^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)
Exponent: \(7\)
Generators: $c^{2}f^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $D_7\times C_7^3:S_4$
Order: \(115248\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{4} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times C_7^3:S_4$
Order: \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Automorphism Group: $D_7^3:(C_6\times S_3)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \)
Outer Automorphisms: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.(C_7\times A_4).C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_7\wr S_4$
Normalizer:$D_7\times C_7^3:S_4$
Complements:$C_2\times C_7^3:S_4$
Minimal over-subgroups:$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_7^2$$C_{21}$$D_7$$C_{14}$$C_{14}$$D_7$$D_7$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-8232$
Projective image$D_7\times C_7^3:S_4$