Properties

Label 1152.157872.8.d1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_6^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(9,11,10), (1,4)(3,5), (1,5)(3,4), (12,14)(13,15), (12,13)(14,15), (3,5,4)(6,8,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_2^3\times C_6):S_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2^5\times C_6).C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\operatorname{res}(S)$$S_4\times S_3^2$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$A_4$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_2^2:C_6^2$
Normal closure:$C_2^4:C_6^2$
Core:$C_2\times C_6$
Minimal over-subgroups:$C_2^4:C_6^2$
Maximal under-subgroups:$C_6\times A_4$$C_2^3\times C_6$$C_2^2\times A_4$$C_6^2$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$(C_2\times C_6):S_4$