Properties

Label 1152.153827.12.n2
Order $ 2^{5} \cdot 3 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:C_6$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(13,15,14), (1,5)(2,7)(3,4)(6,8), (1,6,4,2)(3,7,5,8), (1,3)(4,5)(9,10)(11,12), (1,5)(2,8)(3,4)(6,7)(9,12)(10,11), (1,3)(2,8)(4,5)(6,7)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3\times C_2^5:A_4$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^6.C_3^2.D_6$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2^3:\GL(2,\mathbb{Z}/4)$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^3\times C_6$
Normalizer:$C_2^6:C_6$
Normal closure:$C_2^6:C_6$
Core:$C_2\times C_6$
Minimal over-subgroups:$C_2^5:C_6$$C_2^5:C_6$
Maximal under-subgroups:$C_6\times D_4$$C_2^2:C_{12}$$C_2^2:C_{12}$$C_2^3\times C_6$$C_2^2\wr C_2$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$12$
Möbius function$0$
Projective image$C_2^5:A_4$