Subgroup ($H$) information
| Description: | $C_2^3\times C_6$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$\langle(13,15,14), (1,5)(2,7)(3,4)(6,8), (1,3)(2,8)(4,5)(6,7)(9,10)(11,12), (1,5)(2,7)(3,4)(6,8)(9,12)(10,11), (1,3)(2,8)(4,5)(6,7)\rangle$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and elementary for $p = 2$ (hence hyperelementary).
Ambient group ($G$) information
| Description: | $C_3\times C_2^5:A_4$ |
| Order: | \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2\times A_4$ |
| Order: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^6.C_2^6.C_3^2.D_6$, of order \(442368\)\(\medspace = 2^{14} \cdot 3^{3} \) |
| $\operatorname{Aut}(H)$ | $C_2\times A_8$, of order \(40320\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_6:S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3072\)\(\medspace = 2^{10} \cdot 3 \) |
| $W$ | $C_3$, of order \(3\) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-4$ |
| Projective image | $C_2^5:A_4$ |