Group information
| Description: | $C_2^5:A_4$ | |
| Order: | \(384\)\(\medspace = 2^{7} \cdot 3 \) |
|
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
|
| Automorphism group: | $C_2^6.C_2^6.C_3.S_3$, of order \(73728\)\(\medspace = 2^{13} \cdot 3^{2} \) |
|
| Composition factors: | $C_2$ x 7, $C_3$ |
|
| Derived length: | $2$ |
|
This group is nonabelian, monomial (hence solvable), and metabelian.
Group statistics
| Order | 1 | 2 | 3 | 4 | 6 | |
|---|---|---|---|---|---|---|
| Elements | 1 | 79 | 128 | 48 | 128 | 384 |
| Conjugacy classes | 1 | 15 | 2 | 4 | 2 | 24 |
| Divisions | 1 | 15 | 1 | 4 | 1 | 22 |
| Autjugacy classes | 1 | 5 | 1 | 1 | 1 | 9 |
| Dimension | 1 | 2 | 3 | 6 | |
|---|---|---|---|---|---|
| Irr. complex chars. | 6 | 0 | 10 | 8 | 24 |
| Irr. rational chars. | 2 | 2 | 10 | 8 | 22 |
Minimal presentations
| Permutation degree: | $12$ |
| Transitive degree: | $24$ |
| Rank: | $3$ |
| Inequivalent generating triples: | $455$ |
Minimal degrees of faithful linear representations
| Over $\mathbb{C}$ | Over $\mathbb{R}$ | Over $\mathbb{Q}$ | |
|---|---|---|---|
| Irreducible | none | none | none |
| Arbitrary | not computed | not computed | not computed |
Constructions
| Presentation: |
${\langle a, b, c, d, e, f, g \mid a^{6}=b^{2}=c^{2}=d^{2}=e^{2}=f^{2}=g^{2}= \!\cdots\! \rangle}$
| |||||||||
|
| ||||||||||
| Permutation group: | Degree $12$
$\langle(1,2)(3,8)(4,6)(5,7), (3,5,4)(6,8,7)(10,12,11), (1,3)(2,6)(4,5)(7,8), (1,4) \!\cdots\! \rangle$
| |||||||||
|
| ||||||||||
| Matrix group: | $\left\langle \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}\right), \left(\begin{array}{rrrrr} 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \end{array}\right) \right\rangle \subseteq \GL_{5}(\F_{2})$ | |||||||||
|
| ||||||||||
| Transitive group: | 24T1023 | 24T1030 | 24T1031 | 24T1034 | all 5 | |||||
| Direct product: | not isomorphic to a non-trivial direct product | |||||||||
| Semidirect product: | $C_2^5$ $\,\rtimes\,$ $A_4$ | $C_2^6$ $\,\rtimes\,$ $C_6$ | $(C_2^4:A_4)$ $\,\rtimes\,$ $C_2$ | $C_2^4$ $\,\rtimes\,$ $(C_2\times A_4)$ | all 8 | |||||
| Trans. wreath product: | not isomorphic to a non-trivial transitive wreath product | |||||||||
| Non-split product: | $C_2^4$ . $(C_2\times A_4)$ | $C_2^2$ . $(C_2^3:A_4)$ | more information | |||||||
Elements of the group are displayed as permutations of degree 12.
Homology
| Abelianization: | $C_{6} \simeq C_{2} \times C_{3}$ |
|
| Schur multiplier: | $C_{2}^{5}$ |
|
| Commutator length: | $1$ |
|
Subgroups
There are 4726 subgroups in 824 conjugacy classes, 21 normal (9 characteristic).
Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.
Special subgroups
| Center: | $Z \simeq$ $C_1$ | $G/Z \simeq$ $C_2^5:A_4$ |
|
| Commutator: | $G' \simeq$ $C_2^6$ | $G/G' \simeq$ $C_6$ |
|
| Frattini: | $\Phi \simeq$ $C_2^2$ | $G/\Phi \simeq$ $C_2^3:A_4$ |
|
| Fitting: | $\operatorname{Fit} \simeq$ $C_2^4:D_4$ | $G/\operatorname{Fit} \simeq$ $C_3$ |
|
| Radical: | $R \simeq$ $C_2^5:A_4$ | $G/R \simeq$ $C_1$ |
|
| Socle: | $\operatorname{soc} \simeq$ $C_2^4$ | $G/\operatorname{soc} \simeq$ $C_2\times A_4$ |
|
| 2-Sylow subgroup: | $P_{ 2 } \simeq$ $C_2^4:D_4$ | ||
| 3-Sylow subgroup: | $P_{ 3 } \simeq$ $C_3$ |
Subgroup diagram and profile
For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
To see subgroups sorted vertically by order instead, check this box.
Subgroup information
Click on a subgroup in the diagram to see information about it.
Series
| Derived series | $C_2^5:A_4$ | $\rhd$ | $C_2^6$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Chief series | $C_2^5:A_4$ | $\rhd$ | $C_2^4:A_4$ | $\rhd$ | $C_2^6$ | $\rhd$ | $C_2^4$ | $\rhd$ | $C_2^2$ | $\rhd$ | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Lower central series | $C_2^5:A_4$ | $\rhd$ | $C_2^6$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Upper central series | $C_1$ |
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Supergroups
This group is a maximal subgroup of 15 larger groups in the database.
This group is a maximal quotient of 11 larger groups in the database.
Character theory
Complex character table
See the $24 \times 24$ character table. Alternatively, you may search for characters of this group with desired properties.
Rational character table
See the $22 \times 22$ rational character table.