Subgroup ($H$) information
Description: | $C_7$ |
Order: | \(7\) |
Index: | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
Exponent: | \(7\) |
Generators: |
$d^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_{42}:\He_3$ |
Order: | \(1134\)\(\medspace = 2 \cdot 3^{4} \cdot 7 \) |
Exponent: | \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 3$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_6\times \He_3$ |
Order: | \(162\)\(\medspace = 2 \cdot 3^{4} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_3^4:(S_3\times \GL(2,3))$, of order \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \) |
Outer Automorphisms: | $S_3\times C_3^2:\GL(2,3)$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The quotient is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^4.S_3^2\times F_7$ |
$\operatorname{Aut}(H)$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(20412\)\(\medspace = 2^{2} \cdot 3^{6} \cdot 7 \) |
$W$ | $C_3$, of order \(3\) |
Related subgroups
Centralizer: | $C_3^2\times C_{42}$ | ||||
Normalizer: | $C_{42}:\He_3$ | ||||
Complements: | $C_6\times \He_3$ | ||||
Minimal over-subgroups: | $C_{21}$ | $C_{21}$ | $C_{21}$ | $C_7:C_3$ | $C_{14}$ |
Maximal under-subgroups: | $C_1$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $0$ |
Projective image | $C_{42}:\He_3$ |