Properties

Label 1134.198.54.a1
Order $ 3 \cdot 7 $
Index $ 2 \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{21}$
Order: \(21\)\(\medspace = 3 \cdot 7 \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $c, d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{42}:\He_3$
Order: \(1134\)\(\medspace = 2 \cdot 3^{4} \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 3$, and metabelian.

Quotient group ($Q$) structure

Description: $C_3^2\times C_6$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
Outer Automorphisms: $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 3$ (hence hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.S_3^2\times F_7$
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(10206\)\(\medspace = 2 \cdot 3^{6} \cdot 7 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_3^2\times C_{42}$
Normalizer:$C_{42}:\He_3$
Minimal over-subgroups:$C_3\times C_{21}$$C_3\times C_{21}$$C_{21}:C_3$$C_{42}$
Maximal under-subgroups:$C_7$$C_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$27$
Projective image$C_{14}:C_3^3$