Properties

Label 1134.198.54.c1
Order $ 3 \cdot 7 $
Index $ 2 \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{21}$
Order: \(21\)\(\medspace = 3 \cdot 7 \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(21\)\(\medspace = 3 \cdot 7 \)
Generators: $ad^{14}, d^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{42}:\He_3$
Order: \(1134\)\(\medspace = 2 \cdot 3^{4} \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 3$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.S_3^2\times F_7$
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1134\)\(\medspace = 2 \cdot 3^{4} \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^2\times C_{42}$
Normalizer:$C_3^2\times C_{42}$
Normal closure:$C_3\times C_{21}$
Core:$C_7$
Minimal over-subgroups:$C_3\times C_{21}$$C_3\times C_{21}$$C_{42}$
Maximal under-subgroups:$C_7$$C_3$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$3$
Möbius function$0$
Projective image$C_{42}:\He_3$