Properties

Label 1120.833.56.c1.b1
Order $ 2^{2} \cdot 5 $
Index $ 2^{3} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a, b^{84}, b^{70}c^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{70}:Q_8$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.(C_2^3\times C_6).C_2^5$
$\operatorname{Aut}(H)$ $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\operatorname{res}(S)$$C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2\times C_4$
Normalizer:$D_{10}:Q_8$
Normal closure:$D_{70}$
Core:$C_{10}$
Minimal over-subgroups:$D_{70}$$C_2\times D_{10}$
Maximal under-subgroups:$C_{10}$$D_5$$C_2^2$
Autjugate subgroups:1120.833.56.c1.a1

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$0$
Projective image$Q_8\times D_{35}$