Properties

Label 1120.819.1.a1
Order $ 2^{5} \cdot 5 \cdot 7 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:D_{140}$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Index: $1$
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $a, d^{84}, d^{35}, c, b, d^{20}, d^{70}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_2^2:D_{140}$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.(C_2^5\times C_6).C_2^3$
$\operatorname{Aut}(H)$ $C_{70}.(C_2^5\times C_6).C_2^3$
$W$$C_2\times D_{70}$, of order \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^2:D_{140}$
Complements:$C_1$
Maximal under-subgroups:$C_2^2\times D_{70}$$C_{70}:D_4$$C_2^2:C_{140}$$C_2\times D_{140}$$D_{70}:C_4$$C_2^2:D_{28}$$C_2^2:D_{20}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_2\times D_{70}$