Subgroup ($H$) information
Description: | $C_2^2:C_{140}$ |
Order: | \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \) |
Index: | \(2\) |
Exponent: | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
Generators: |
$b, d^{70}, d^{84}, d^{20}, d^{35}, c$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_2^2:D_{140}$ |
Order: | \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \) |
Exponent: | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{70}.(C_2^5\times C_6).C_2^3$ |
$\operatorname{Aut}(H)$ | $C_6\times C_2^3.C_2^4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_3 \times (C_2^3.C_2^5)$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \) |
$W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_2\times D_{70}$ |