Properties

Label 1120.819.2.c1
Order $ 2^{4} \cdot 5 \cdot 7 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2:C_{140}$
Order: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Index: \(2\)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Generators: $b, d^{70}, d^{84}, d^{20}, d^{35}, c$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^2:D_{140}$
Order: \(1120\)\(\medspace = 2^{5} \cdot 5 \cdot 7 \)
Exponent: \(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.(C_2^5\times C_6).C_2^3$
$\operatorname{Aut}(H)$ $C_6\times C_2^3.C_2^4$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3 \times (C_2^3.C_2^5)$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(140\)\(\medspace = 2^{2} \cdot 5 \cdot 7 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2\times C_{70}$
Normalizer:$C_2^2:D_{140}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$C_2^2:D_{140}$
Maximal under-subgroups:$C_2^2\times C_{70}$$C_2\times C_{140}$$C_2^2:C_{28}$$C_2^2:C_{20}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2\times D_{70}$