Properties

Label 111168.g.24.a1.a1
Order $ 2^{3} \cdot 3 \cdot 193 $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{4632}$
Order: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Generators: $a^{48}, a^{96}, b^{3}, b^{193}, a^{24}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial) and cyclic (hence abelian, elementary ($p = 2,3,193$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{579}:C_{192}$
Order: \(111168\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{24}$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{579}.C_{24}.C_4^2.C_2^3$
$\operatorname{Aut}(H)$ $C_2^3\times C_{192}$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$W$$C_{24}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{4632}$
Normalizer:$C_{579}:C_{192}$
Minimal over-subgroups:$C_{24}\times C_{193}:C_3$$C_3\times C_{193}:C_{16}$
Maximal under-subgroups:$C_{2316}$$C_{1544}$$C_{24}$

Other information

Möbius function$0$
Projective image not computed