Properties

Label 111168.a.16.a1.a1
Order $ 2^{2} \cdot 3^{2} \cdot 193 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{579}:C_{12}$
Order: \(6948\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 193 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(2316\)\(\medspace = 2^{2} \cdot 3 \cdot 193 \)
Generators: $a^{96}, b^{3}, b^{193}, a^{64}, a^{48}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_3\times F_{193}$
Order: \(111168\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Automorphism Group: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{579}.C_{96}.C_2^2$
$\operatorname{Aut}(H)$ $C_{579}.C_{192}.C_2$
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\times F_{193}$
Minimal over-subgroups:$C_{579}:C_{24}$
Maximal under-subgroups:$C_{579}:C_6$$C_{193}:C_{12}$$C_{193}:C_{12}$$C_{193}:C_{12}$$C_{193}:C_{12}$$C_3\times C_{12}$

Other information

Möbius function$0$
Projective image$F_{193}$