-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '111168.a', 'ambient_counter': 1, 'ambient_order': 111168, 'ambient_tex': 'C_3\\times F_{193}', 'central': False, 'central_factor': False, 'centralizer_order': 3, 'characteristic': True, 'core_order': 6948, 'counter': 18, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '111168.a.16.a1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '16.a1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '16.1', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': 1, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 16, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_{16}', 'simple': False, 'solvable': True, 'special_labels': ['C4'], 'split': False, 'standard_generators': False, 'stem': False, 'subgroup': '6948.a', 'subgroup_hash': 163829408175284635, 'subgroup_order': 6948, 'subgroup_tex': 'C_{579}:C_{12}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '111168.a', 'aut_centralizer_order': None, 'aut_label': '16.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '37056.a1.a1', 'complements': [], 'conjugacy_class_count': 1, 'contained_in': ['8.a1.a1'], 'contains': ['32.a1.a1', '48.a1.a1', '48.b1.a1', '48.b1.b1', '48.b1.c1', '3088.a1.a1'], 'core': '16.a1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [6817, 7769, 2884, 6947, 2431, 2015, 2153, 7919], 'generators': [96, 576, 37056, 64, 48], 'label': '111168.a.16.a1.a1', 'mobius_quo': 0, 'mobius_sub': 0, 'normal_closure': '16.a1.a1', 'normal_contained_in': ['8.a1.a1'], 'normal_contains': ['32.a1.a1', '48.a1.a1', '48.b1.a1', '48.b1.b1', '48.b1.c1'], 'normalizer': '1.a1.a1', 'old_label': '16.a1.a1', 'projective_image': '37056.a', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '16.a1.a1', 'subgroup_fusion': None, 'weyl_group': '37056.a'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '36.8', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 37056, 'aut_gen_orders': [96, 192, 3], 'aut_gens': [[1, 12], [6541, 5280], [2941, 264], [457, 3612]], 'aut_group': None, 'aut_hash': 9034218873832238734, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 222336, 'aut_permdeg': 772, 'aut_perms': [371137491801037258027492775542723235770300719802765648134128892720217058441958843151951767946327149691265522811303463965356007007428023021032479277465961877890676992472270673550792127983880997153410229057313403208152866198130776079687862010303389574648207101067866607443169544067036240662893223364803785110600232842853551631816987011783895200319306150505959855521508817051925429473980180126988655369245675922858220815012181076703143742917795542275789970441201026892364489065291466060254084245928622758135785570932038092860568961917135815638621607343643267054157776798416830165519580800977785503269837654596236596031342238590541671777537476609253808763229872971568182713280965362393586279573921776360105421339385138398596770629421334486928902247353203253905733526216381789845387582881290708527099574554675252036249920459277917418895378868388988579736973653129111514476630623460343831661130312231362272939631574119270327921562969595889210189978176761833514720158677398068833430736798620931484762123889874267875156305028275527539040564516768693585078008285734145138984990974829264077480430936699830888289242343272174921990963431573092939918433538652817727501560199243582467369702991746286090268281147979711865254893862709885929747937945704956133716661062571723475703263822700453378572737920422464708749408955397365618963889940924106056454490912327067283161255146799022958408582365092598865471104662573257047022745236568667630724987518511547311661359800483014570571467241321609619361084776577129154481778929594831416544618957966294463812324997476930440765520586238506179444007145853701459181662509119937462598258768113061575863471127794029771461798544748712333590042189542316995865133087582700290016387728852035802138424128089003034388424629464704109044467943529063575105865254438009235133313177614420942411107499451472177946826877825604422417769164622926627091436439636245581426270196973373259784440, 391116145417704187889556078829781219777293928979390550459381544089552297932673916899986865748552603493903886949218161227302666806031154359851103826680316770256194169745146830930856271429506758419002857767402341723635385062044046748905309141232899489175790518870943232245001055330120836613164986803686856265182865667134665571077332068954382127467842458766180864484144123177054380852501806693909042677146036048748903418355495605569393355081955901018105817356554400374513956757580390635717460583859715498043185322805488894934684178335843592937483125088797733924797939224383323368703764495383563454724472565258869136829831144130507028594843824237284728970712494023276956620045501955499223560217359976408644009446538778324583531332124473147751206626058413859705763715424037253377627683899273154437472373275721833932491901907860849355907900855441981201794885223373404787604114283392102738624502413347290114125101400006654884487537415608709883559422243255050233866424254023602419051148414948980884386665254148923950511468809797847667168275808685230025107460123553598742553361062134422946469347517339750242824544565422697387290511503771694543088276585865019332316569672725577383885556939631504161011038481596040267991588894145129390735745981959191378806205967473602487052636248810624968769689757609931803800024434887216407410991708500950073716115830316863007345796677329178229702666959464454241661178045094593804843302569241239122594496301013088871330456188707905090034455994115583053221149937996058190504886430528854594081282666409273976986371574727211729417502182142835242750552013826619222032797820442140540675955133709992364067888167907940747799101887976626285577227119209004524178287524374992474422655054353769504636695332547555908496805220374150371266996819224030756549023518463887300986892908603937631609553721283275274017623542375749160489369858688154853086708513781183274744862440664855805196736, 417686029655046367793696752761718471607349568567605695057015070803587137010932725523438801409693127294242848057252492782238090100993079560216850999905863733019490469167055749762702389036100319938710738853264762457360461549495152377263878630315611121190248966968644546220281167008331439066221945072015832429705008301095830203420813129091208879149422280912713765341903289188923815093393941227620218308274920484938295399328528020442050578027796845194279770518276892154160930387276117194294963036829536759644629965114624519167094646926478448578919170176081740105687518266237049685904763032878948141829375788712447267299691222615192295163376202531996826373416751930887365135877107227235607661436582801234164227745851012153382947515051720883640898009054602920213782221881248379434532791847407709864176580408565696249064026451725594853732750888080960467992484222790134384549959095497561729134869926600668643338418559489423566639837198359877667807858181804324896763117002949705407114887800939694547535692585729435009396096800998021479605928989568758783772127974594544208495265745991453108333464813426531770787668583604079835161731338492396193839429001125631342201085635134058247594449735083921497644736474909769024186040576010857954849202539213365828952575372420143519878903697138296620341709874869884183838544619065997152246762145599890576366259779784787724457293284577838419486481582022112326195622800018616862453070283289374022378223587920091384174953418116325073154735698575414699499575718058613208275797500326758375648538673921057355910671403337404423337587115501031584248255045479446406053970497389661639479989176740830197945620390645429622589194088419439446372096358359146651858284881301251160963561316645007542295646299960159924817050025801528183478201900686387599164790400735801816340218917225504723208186634081449825225931782108209328460515497174639545653226343715487152805842679416812347633723], 'aut_phi_ratio': 96.5, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 193, 1, 1], [3, 1, 2, 1], [3, 193, 3, 2], [4, 193, 1, 2], [6, 193, 2, 1], [6, 193, 3, 2], [12, 193, 2, 2], [12, 193, 3, 4], [193, 12, 16, 1], [579, 12, 32, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{579}.C_{192}.C_2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 37056, 'autcentquo_group': '37056.a', 'autcentquo_hash': 1432757702296672986, 'autcentquo_nilpotent': False, 'autcentquo_order': 37056, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{193}', 'cc_stats': [[1, 1, 1], [2, 193, 1], [3, 1, 2], [3, 193, 6], [4, 193, 2], [6, 193, 8], [12, 193, 16], [193, 12, 16], [579, 12, 32]], 'center_label': '3.1', 'center_order': 3, 'central_product': True, 'central_quotient': '2316.b', 'commutator_count': 1, 'commutator_label': '193.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1', '3.1', '193.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2316.b', 1], ['3.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 193, 1, 1], [3, 1, 2, 1], [3, 193, 2, 3], [4, 193, 2, 1], [6, 193, 2, 4], [12, 193, 4, 4], [193, 12, 16, 1], [579, 12, 32, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 96, 'exponent': 2316, 'exponents_of_order': [2, 2, 1], 'factors_of_aut_order': [2, 3, 193], 'factors_of_order': [2, 3, 193], 'faithful_reps': [[12, 0, 32]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '6948.a', 'hash': 163829408175284635, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 2316, 'inner_gen_orders': [12, 193], 'inner_gens': [[1, 1560], [5401, 12]], 'inner_hash': 3, 'inner_nilpotent': False, 'inner_order': 2316, 'inner_split': False, 'inner_tex': 'C_{193}:C_{12}', 'inner_used': [1, 2], 'irrC_degree': 12, 'irrQ_degree': 384, 'irrQ_dim': 384, 'irrR_degree': 24, 'irrep_stats': [[1, 36], [12, 48]], 'label': '6948.a', 'linC_count': 32, 'linC_degree': 12, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 194, 'linQ_degree_count': 6, 'linQ_dim': 194, 'linQ_dim_count': 6, 'linR_count': 192, 'linR_degree': 14, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C579:C12', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 18, 'number_characteristic_subgroups': 11, 'number_conjugacy_classes': 84, 'number_divisions': 17, 'number_normal_subgroups': 20, 'number_subgroup_autclasses': 24, 'number_subgroup_classes': 36, 'number_subgroups': 3108, 'old_label': None, 'order': 6948, 'order_factorization_type': 222, 'order_stats': [[1, 1], [2, 193], [3, 1160], [4, 386], [6, 1544], [12, 3088], [193, 192], [579, 384]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 48, 'outer_gen_orders': [2, 48], 'outer_gen_pows': [0, 3], 'outer_gens': [[2317, 6936], [4633, 5124]], 'outer_group': '96.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 96, 'outer_permdeg': 19, 'outer_perms': [6423384156578665, 13560771052696588], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3\\times C_{16}', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 196, 'pgroup': 0, 'primary_abelian_invariants': [4, 3, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 9], [4, 4], [192, 1], [384, 1]], 'representations': {'PC': {'code': '2484544393403494715474679500204522112733094646143', 'gens': [1, 4], 'pres': [5, -2, -2, -3, -3, -193, 10, 26, 31203, 13088, 18073, 78, 117004, 49059, 24314]}, 'GLFp': {'d': 2, 'p': 193, 'gens': [7189251, 7189106, 776418240]}, 'Perm': {'d': 196, 'gens': [26997883370683755077834348632583544075689123646545924239333415195270970618446762803151534820839084168332574930202330878136717844416248344506188842014859582665659028857979420994463281937424786636465603603264193802991238759711988872255230924689688520127256054785069161550511582761091078406738638113786583221698027154119610457882727594361829212191882754524688969640, 2631777980035845350135382426734565011034447922052599891420990730113738056753597827295822581371823538584720697912300444475715628525068356947731137665342306565309372655949933937527381197282002066466381013963617266693057375177357599189542857037592345127941010427549992337437299501736403248100214772049765657481237711923522648211336620799430801152351097935929224721400, 53649271295476239427485909099775454234166999615723762995659120830603826843282000977475945190144260550089319006283869137285687970646473984268535334212926921323592118929967245128994273681836852701890011310405127668484185849915818135096279080876220528005067781820885549539553055118957409493114150463364122295060375962689736182697797098731623576456621354100625274163]}}, 'schur_multiplier': [3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 12], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{579}:C_{12}', 'transitive_degree': 579, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '576.182', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 37056, 'aut_gen_orders': [64, 192, 96], 'aut_gens': [[1, 192], [97153, 39552], [105793, 64320], [47809, 18816]], 'aut_group': None, 'aut_hash': 9034218873832238734, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 222336, 'aut_permdeg': 579, 'aut_perms': [415332439196822892389352437816130401390738383370221364844878850607550778333990999776184605568421278475280244453511953039962181494122189821781883263316959201531902154435173394089394881934386442975626803816682013366274710639327603048148709203263335850956934513705677432612445360081946015157071655246361766139655035408612165506562077446916418628964643217990337766352996222601170027446653298548723903021005585090748174612486989215916127204701984643312424419565310829136987071596031819888738883484494631912286631467416080596207115760718910261030352200258429464228694285393933605670082097777061678748728778910376089906175830219538826740427819069543445641473111518135030865041383761505802995633042264157695385149095812910305730873962133804210048811778408408912044895041794289016373876993393003850343067915221826771638027998018289443816891858117689277909315562197355454440756908444550351612076844757970360026059982795028072217662618178674174347631582979577052959925128972855693498719179982748932220795907650991275021926868086525363090353655986424650695238183662501765618102081991333595375807675522468968658278057534484857352976226502006309087252976077697563757811289195230490163803952647899670731559865265643180967467213966712908123993183585039763847724928805148033274967628307145129222343322411324931038858051345174327003752114021781110525226462752885580313, 479014167272169279755996534749016869201360125409707869346777139173855325732973306407581827360637861416796628583967537605174750440755172951647611148360420886066818966625224493036121140593991361702574439173487931495542811324288522316193184742900760726240752065536218699257748196284431579881855064224518805697295732303159061258681671081176040188032548833476269580387262908306563250660702611019277068476953424205735136714001191742818540650758360743051137638423493431011048231585738140104365197692678118733943399624276121231952910352335809352534900979894500301522060798687180784338268714734310069283898407485255332153678510128023079965874650141745439653517794871949674493658599361325135322238631828400809628963234626171640799212597628544539653848153537551703888160925703847542959186641445837725502276602925122671623118778042891665514630761156855503193641295628483318460990688232589593362604657098181334407559208546438440116238131525874637673754413479433224759030646838233940605423973996483539483765545005350674521063200626975803892704173618464958000037145440102744057197009069087597840592403845425088701173293366696779715011794067656736491752480204104369899761052146486746011901145681350543544281549199692102699926114539513794074642925875249292216791419433139874592421827462737631936905234500848852439091584890275128310285682039693192033515132543417787127, 277760953236342837117292557174462821114287163390486698520044107397102630341828911334724634063986710842920444830955313299925385350983244268886021022315981237795549780737884741923651084913239180727343406296955777942433557918598624112300413804496960863368252179927543364492282896784532251429949042415925461844126162445734642961450965380443036076222027786381896161962090515095762416255165795351898158842639957857049238957473589440156894832176991940550709600986239377877538544743956803923387193193865066176949238129341122274150540946851597339194782674124160123517928207485441918334711385663320613461637191579989079478741038608798295078518503987684983548650849968716598703795924874995717040585144950493270494927740533175639582291434685719726656706800993299794242981898778028252854083548476628038358490539279012898734102971616777329387637325227448025943318834668524333064387760248758936069676844022436243570342772220747138128162070159407304816491385443347970526774849970968076693118499504812073473738620026244292676174046524243626716974721534065429730115396995305226243592090361756712031130218463359952789100999205852776151465902423211012566157221428957791334117857340426667880379703257574413329883898048665482750203385023283066989113542296839356503238609620710525212771820102003142672456708042283414397442459359716168084828115094291803017438146292553014690], 'aut_phi_ratio': 6.03125, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 193, 1, 1], [3, 1, 2, 1], [3, 193, 3, 2], [4, 193, 1, 2], [6, 193, 2, 1], [6, 193, 3, 2], [8, 193, 1, 4], [12, 193, 2, 2], [12, 193, 3, 4], [16, 193, 1, 8], [24, 193, 2, 4], [24, 193, 3, 8], [32, 193, 1, 16], [48, 193, 2, 8], [48, 193, 3, 16], [64, 193, 1, 32], [96, 193, 2, 16], [96, 193, 3, 32], [192, 193, 2, 32], [192, 193, 3, 64], [193, 192, 1, 1], [579, 192, 2, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{579}.C_{96}.C_2^2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 37056, 'autcentquo_group': '37056.a', 'autcentquo_hash': 1432757702296672986, 'autcentquo_nilpotent': False, 'autcentquo_order': 37056, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{193}', 'cc_stats': [[1, 1, 1], [2, 193, 1], [3, 1, 2], [3, 193, 6], [4, 193, 2], [6, 193, 8], [8, 193, 4], [12, 193, 16], [16, 193, 8], [24, 193, 32], [32, 193, 16], [48, 193, 64], [64, 193, 32], [96, 193, 128], [192, 193, 256], [193, 192, 1], [579, 192, 2]], 'center_label': '3.1', 'center_order': 3, 'central_product': True, 'central_quotient': '37056.a', 'commutator_count': 1, 'commutator_label': '193.1', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '193.1'], 'composition_length': 9, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['37056.a', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 193, 1, 1], [3, 1, 2, 1], [3, 193, 2, 3], [4, 193, 2, 1], [6, 193, 2, 4], [8, 193, 4, 1], [12, 193, 4, 4], [16, 193, 8, 1], [24, 193, 8, 4], [32, 193, 16, 1], [48, 193, 16, 4], [64, 193, 32, 1], [96, 193, 32, 4], [192, 193, 64, 4], [193, 192, 1, 1], [579, 192, 2, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 24576, 'exponent': 37056, 'exponents_of_order': [6, 2, 1], 'factors_of_aut_order': [2, 3, 193], 'factors_of_order': [2, 3, 193], 'faithful_reps': [[192, 0, 2]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '111168.a', 'hash': 2544430592072231885, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 37056, 'inner_gen_orders': [192, 193], 'inner_gens': [[1, 28416], [82945, 192]], 'inner_hash': 1432757702296672986, 'inner_nilpotent': False, 'inner_order': 37056, 'inner_split': True, 'inner_tex': 'F_{193}', 'inner_used': [1, 2], 'irrC_degree': 192, 'irrQ_degree': 384, 'irrQ_dim': 384, 'irrR_degree': None, 'irrep_stats': [[1, 576], [192, 3]], 'label': '111168.a', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C3*F193', 'ngens': 9, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 258, 'number_characteristic_subgroups': 23, 'number_conjugacy_classes': 579, 'number_divisions': 37, 'number_normal_subgroups': 44, 'number_subgroup_autclasses': 56, 'number_subgroup_classes': 84, 'number_subgroups': 7764, 'old_label': None, 'order': 111168, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 193], [3, 1160], [4, 386], [6, 1544], [8, 772], [12, 3088], [16, 1544], [24, 6176], [32, 3088], [48, 12352], [64, 6176], [96, 24704], [192, 49408], [193, 192], [579, 384]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[37057, 110976], [74113, 192]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 196, 'pgroup': 0, 'primary_abelian_invariants': [64, 3, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 9], [4, 5], [8, 5], [16, 5], [32, 5], [64, 4], [192, 1], [384, 1]], 'representations': {'PC': {'code': '43023836931081284013122713998333971413484062145605317493274726077956947008935476624168211114647392625691859060173537147616629038650528127', 'gens': [1, 8], 'pres': [9, -2, -2, -2, -2, -2, -2, -3, -3, -193, 18, 46, 74, 102, 130, 158, 2045959, 3324688, 1175065, 654946, 42379, 36772, 59893, 286, 6905096, 2216177, 1714634, 1084787, 142928, 123983, 61298]}, 'GLFp': {'d': 2, 'p': 193, 'gens': [201293672, 7189251, 776418240]}, 'Perm': {'d': 196, 'gens': [26998242104082005447251696691331464774121971917348421755781267835361429941668435221333290080630207260549917888723056059763539993175776658074908879762949012617169070415501257720842862810632964336955359428101490488135920181880491972015344559396903845870899558118113549760267322033639158277229321994017930485074559887727912882386576752937183479668551985879937835304, 2631778338730623662950964945824670653980764756662906445448946890283312750222914027144913759101874195455749646321665281014480436912763364625294578572203894275170402936839769371092982389742011367078542571256093075126368574007362860032302134699363967331838336966533207438392507094484694472919274785125127394266993739467967407942441269210233369459195139463953392461104, 53651049977427163004782649094143068173087154853604693633795859769783469643879806996027569149175074794409538134264301490310872601961150471788286697107340058590630568151646039445332768032894779979465847323816958134956968491642077503940495849602428272197081574774182305031506649821005649262198902553255728399362769286478552688840974860927203438716481864507921529723]}}, 'schur_multiplier': [3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 192], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_3\\times F_{193}', 'transitive_degree': 579, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '16.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': False, 'aut_derived_length': 1, 'aut_exponent': 4, 'aut_gen_orders': [2, 4], 'aut_gens': [[1], [15], [3]], 'aut_group': '8.2', 'aut_hash': 2, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 8, 'aut_permdeg': 6, 'aut_perms': [120, 130], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 1, 2, 1], [8, 1, 4, 1], [16, 1, 8, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2\\times C_4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '8.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2\\times C_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1], [4, 1, 2], [8, 1, 4], [16, 1, 8]], 'center_label': '16.1', 'center_order': 16, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 1, 2, 1], [8, 1, 4, 1], [16, 1, 8, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 16, 'exponents_of_order': [4], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[1, 0, 8]], 'familial': True, 'frattini_label': '8.1', 'frattini_quotient': '2.1', 'hash': 1, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 2, 'irrep_stats': [[1, 16]], 'label': '16.1', 'linC_count': 8, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 1, 'linQ_dim': 8, 'linQ_dim_count': 1, 'linR_count': 4, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C16', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 5, 'number_characteristic_subgroups': 5, 'number_conjugacy_classes': 16, 'number_divisions': 5, 'number_normal_subgroups': 5, 'number_subgroup_autclasses': 5, 'number_subgroup_classes': 5, 'number_subgroups': 5, 'old_label': None, 'order': 16, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 1], [4, 2], [8, 4], [16, 8]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 4], 'outer_gen_pows': [0, 0], 'outer_gens': [[15], [3]], 'outer_group': '8.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 8, 'outer_permdeg': 6, 'outer_perms': [120, 130], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times C_4', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 16, 'pgroup': 2, 'primary_abelian_invariants': [16], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1], [4, 1], [8, 1]], 'representations': {'PC': {'code': 149511, 'gens': [1], 'pres': [4, -2, -2, -2, -2, 8, 21, 34]}, 'GLFp': {'d': 2, 'p': 7, 'gens': [1860]}, 'Perm': {'d': 16, 'gens': [20916435456000, 9703614452976, 4097506710982, 1313941673647]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': False, 'smith_abelian_invariants': [16], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{16}', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}