Properties

Label 1088.126.68.c1.c1
Order $ 2^{4} $
Index $ 2^{2} \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_8$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $ac^{17}, c^{34}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $Q_8\times C_{136}$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{34}$
Order: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Automorphism Group: $S_3\times C_{16}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $S_3\times C_{16}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{16}\times C_2^4:C_3.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(512\)\(\medspace = 2^{9} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_4\times C_{136}$
Normalizer:$Q_8\times C_{136}$
Minimal over-subgroups:$C_2\times C_{136}$$C_4\times C_8$$C_4:C_8$$C_4:C_8$
Maximal under-subgroups:$C_2\times C_4$$C_8$
Autjugate subgroups:1088.126.68.c1.a11088.126.68.c1.b1

Other information

Möbius function$-2$
Projective image$C_2^2\times C_{34}$