Properties

Label 1088.126.136.a1.a1
Order $ 2^{3} $
Index $ 2^{3} \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $b^{6}c^{34}, c^{34}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $Q_8\times C_{136}$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times C_{34}$
Order: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Automorphism Group: $C_{16}\times \GL(3,2)$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_{16}\times \GL(3,2)$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{16}\times C_2^4:C_3.C_2^3$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(6144\)\(\medspace = 2^{11} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$Q_8\times C_{136}$
Normalizer:$Q_8\times C_{136}$
Minimal over-subgroups:$C_2\times C_{68}$$C_4^2$$C_4^2$$C_4^2$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$$C_2\times C_8$
Maximal under-subgroups:$C_2^2$$C_4$$C_4$

Other information

Möbius function$8$
Projective image$C_2^2\times C_{34}$