Properties

Label 1088.126.34.b1.b1
Order $ 2^{5} $
Index $ 2 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4:C_8$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(34\)\(\medspace = 2 \cdot 17 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $ac^{17}, bc^{17}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $Q_8\times C_{136}$
Order: \(1088\)\(\medspace = 2^{6} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_{34}$
Order: \(34\)\(\medspace = 2 \cdot 17 \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Automorphism Group: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{16}\times C_2^4:C_3.C_2^3$
$\operatorname{Aut}(H)$ $C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(S)$$C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_{136}$
Normalizer:$Q_8\times C_{136}$
Minimal over-subgroups:$C_4:C_{136}$$C_8\times Q_8$
Maximal under-subgroups:$C_4^2$$C_2\times C_8$$C_2\times C_8$
Autjugate subgroups:1088.126.34.b1.a11088.126.34.b1.c1

Other information

Möbius function$1$
Projective image$C_2^2\times C_{34}$