Subgroup ($H$) information
| Description: | $C_5:D_5$ | 
| Order: | \(50\)\(\medspace = 2 \cdot 5^{2} \) | 
| Index: | \(2160\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \) | 
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) | 
| Generators: | 
		
    $b^{6}, e, d^{6}$
    
    
    
         | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $D_5^3.C_3^2:D_6$ | 
| Order: | \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Derived length: | $4$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \) | 
| $\operatorname{Aut}(H)$ | $C_5^2.\GL(2,5)$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \) | 
| $W$ | $D_5^2.C_2^2$, of order \(400\)\(\medspace = 2^{4} \cdot 5^{2} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $15$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $D_5^3.C_3^2:D_6$ |