Properties

Label 108000.q.10800.p1
Order $ 2 \cdot 5 $
Index $ 2^{4} \cdot 3^{3} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(10800\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $b^{6}, d^{6}e^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_6\times S_3$
Normalizer:$D_{30}:C_{12}$
Normal closure:$C_5^3:C_2$
Core:$C_1$
Minimal over-subgroups:$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_5:D_5$$C_3\times D_5$$C_3\times D_5$$C_3\times D_5$$D_{10}$$D_{10}$$D_{10}$$F_5$$F_5$$F_5$$F_5$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of subgroups in this autjugacy class$150$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3.C_3^2:D_6$