Properties

Label 108000.q.3000.b1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 \cdot 5^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times S_3$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(3000\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $acd^{22}, b^{6}cd^{3}e^{3}, d^{20}, f^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_6\times F_5$
Normalizer:$D_{30}:C_{12}$
Normal closure:$C_3^2:D_5\wr S_3$
Core:$C_3^2$
Minimal over-subgroups:$S_3\times C_{30}$$C_3\times D_{30}$$C_{15}:D_6$$C_6\times D_6$
Maximal under-subgroups:$C_3\times C_6$$C_3\times S_3$$C_3\times S_3$$C_2\times C_6$$D_6$

Other information

Number of subgroups in this autjugacy class$150$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3.C_3^2:D_6$