Properties

Label 108000.q.600.j1
Order $ 2^{2} \cdot 3^{2} \cdot 5 $
Index $ 2^{3} \cdot 3 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:D_6$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Index: \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $acd^{22}, d^{20}, f^{10}, b^{6}cd^{3}e^{2}, e$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
$W$$S_3\times F_5$, of order \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_3\times D_5$
Normalizer:$C_3\times C_5^2:(C_2\times C_4\times S_3)$
Normal closure:$C_3^2:D_5\wr S_3$
Core:$C_3^2$
Minimal over-subgroups:$D_{15}:C_{30}$$C_{15}:D_{30}$$C_{30}:D_6$
Maximal under-subgroups:$C_3^2\times D_5$$S_3\times C_{15}$$C_3\times D_{15}$$C_3\times D_{10}$$S_3\times D_5$$C_6\times S_3$

Other information

Number of subgroups in this autjugacy class$30$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3.C_3^2:D_6$